MULTIPLYING AND DIVIDING FRACTIONS

Background Information

In lower elementary, most students will have learned to multiply and divide fractions by whole numbers, using the Fraction Circles. In upper elementary, students review those basic skills and then advance to multiplying and dividing various combinations of fractions and whole numbers. For example, students learn to multiply fractions by fractions and divide whole numbers by fractions.

Multiplying fractions

Just as with whole numbers, fractions to be multiplied may be called multiplicands and multipliers. The result of multiplying fractions is called the product.

To multiply a fraction by a whole number, the numerator is simply multiplied by the whole number. For example, the sentence “Two quarters equal one half” can be written as the following equation: \(2 \times \frac{1}{4} = \frac{1}{2} \). In this equation, the numerator 1 is multiplied by the whole number 2 to give the intermediate product 2/4, which equals 1/2. In another example, to multiply \(\frac{4}{17} \) by 3, the numerator 4 is multiplied by the whole number 3, for a product of \(\frac{12}{17} \).

To multiply fractions by fractions, the numerators are multiplied together and the denominators are multiplied together. For example, the sentence “One-half of one-half equals one-quarter” can be written as the following equation: \(\frac{1}{2} \times \frac{1}{2} = \frac{1}{4} \). The multiplication sign acts like the word “of.” In another example, \(\frac{3}{4} \times \frac{2}{5} = \frac{6}{20} \).

Dividing fractions

Just as with whole numbers, a fraction to be divided is called the dividend, and the
result is called the quotient. The number by which the dividend is being divided is called the divisor. Montessori students initially learn to divide fractions by sharing out fraction pieces among skittles that represent the divisor, just as they did when dividing whole numbers.

To divide a fraction by a whole number, the numerator is simply divided by the whole number. For example, to divide 6/15 by 3, the numerator 6 is divided by the whole number 3, for a quotient of 2/15.

When dividing fractions using the material, individual pieces of the material cannot be cut up. As a result, it is sometimes necessary to express a fraction in different terms so the divisor will divide evenly into the numerator. This is done by finding a common multiple for the numerator and the divisor. For example, the equation 3/5 ÷ 2 can be expressed as 6/10 ÷ 2. Two divides evenly into 6, giving a quotient of 3/10 for the equation. Students apply this concept by working with Fraction Circles and experimenting until they find an equivalent fraction that can be divided evenly.

To divide a whole number by a fraction, students use a fraction skittle to represent the divisor. For example, to divide 2 by 3/4, students divide two whole circles among three one-fourth Fraction Skittles. The steps are as follows:

- Set up three one-fourth Fraction Skittle pieces.

- Divide the two whole Fraction Circles among the three Fraction Skittle pieces. Since 2 will not divide evenly among three pieces, the Fraction Circles must be made into equivalent fractions that will divide evenly into 3. Using trial and error, the students divide each whole circle into thirds. It is now possible to place 2 thirds on each Fraction Skittle piece.

- Just as with whole numbers, the quotient is always the amount one whole in the divisor gets. Since each one-fourth of the divisor gets 2/3, then the whole divisor gets 4 x 2/3, or 8/3. The quotient is 8/3.

Dividing a fraction by a fraction is done the same way as dividing a whole number by a fraction. That is, a fraction skittle represents the divisor, and the steps are the same. The only difference is that instead of sharing out a whole number among the Fraction Skittle piece(s), the student must share out a fraction.

Simplifying fractions

Some equations have answers in which the numerator is larger than the denominator — for example, 12/6 or 5/2. It is often desirable to simplify such fractions — in other words, express each fraction as an equivalent whole number or as a whole number plus a fractional part. Simplifying fractions is addressed in the section of this manual titled Improper Fractions and Mixed Numbers. Teachers wanting to introduce the concept of simplifying fractions may choose to present Activity 1 from that section at any time.
ACTIVITY 1

Multiplying Fractions by Whole Numbers, Using the Fraction Circle Box

Purpose
To practice multiplying fractions by whole numbers, and learn to multiply fractions greater than 1 by whole numbers.

Material
Fraction Circle Box.

Prepared equation slips for multiplying fractions by whole numbers (on the curriculum support material CD for Whole Numbers and Fractions for fractions equal to 1 or less; also, the teacher should prepare some equation slips with fractions greater than 1, such as 12/7 x 2).

Whiteboard and whiteboard markers.

Math journals and pencils.

Presentation
• Most Montessori teachers review this concept in Year 4 and again in Year 5.

• Most students will be familiar with multiplying fractions equal to 1 or less by whole numbers. The Fraction Circle Box enables them to practice multiplying with fractions greater than 1.

SETTING UP THE EQUATION
• Invite a student to get the Fraction Circle Box and bring it to a table or mat to learn to multiply fractions.

• Invite the student to place the Fraction Circle Box at the top of the work area.

• Encourage the student to choose an equation slip and read it — for example, 5/9 x 4.

• Tell the student that this equation means taking five ninths, four times.

• Write the equation on the whiteboard in the format illustrated.

• Ask the student to write the equation 5/9 x 4 = in her/his journal in the format illustrated.

• Encourage the student to take 5 ninths fraction pieces and arrange them in the work area to form part of a circle.
• Invite the student to repeat this three more times, leaving a space between each group of 5 ninths. He/she will end up with four groups of 5/9.

SOLVING THE EQUATION

• Invite the student to count the fraction pieces in the first group and say how many there are. (Five.)

• Invite the student to say how many fraction pieces are in the other three groups. (Five per group.)

• Encourage the student to say how many fraction pieces there are in all. (Twenty.)

• State that 5/9 taken 4 times equals 20/9. In other words, 5/9 x 4 = 20/9.

• Ask the student to complete the equation in her/his journal: 5/9 x 4 = 20/9. Write the equation on the whiteboard.

• Encourage the student to rearrange the fraction pieces to form as many circles as possible. The student will make 2 circles with 2 ninths fraction pieces left over.

• Invite the student to say the simplified fraction aloud: 2 2/9. Encourage the student to record the fraction 2 2/9 in his/her journals.

• Encourage the student to place the fraction pieces back in the Fraction Circle Box.

• Encourage the student to repeat with several more prepared equations until she/he is proficient at multiplying fractions by whole numbers.

Extensions

• Copy a prepared equation into the journal and try to find the answer without using the Fraction Circles or Fraction Circle Box. Repeat for other prepared equations.

• A student is using Imperial cup measures to prepare a triple batch of a pasta dish for a party. The original recipe calls for 1/3 cup black olives, 2/3 cup feta cheese, and 1/2 cup fresh parsley. What quantities does the student need after tripling the recipe?

• Open any recipe book and practice doubling, tripling, or quadrupling two or three recipes.
ACTIVITY 2

Multiplying Fractions by Fractions, Using Fraction Circles and the Fraction Circle Box

Purpose
To learn how to multiply fractions by fractions.

Material
Fraction Circles.
Fraction Circle Box.
Equation slips for multiplying fractions by fractions, prepared by the teacher.
Math journals and pencils.

Presentation
• Most Montessori teachers present this concept in Year 4 and review it in Years 5 and 6.

SOLVING AN EASY FIRST EQUATION
• Invite a student to get the Fraction Circles and bring them to a table or mat to learn to multiply fractions by fractions.

• Invite the student to place the Fraction Circles at the top of the work area.

• Encourage the student to choose an equation slip and read it — for example, 3/9 x 1/3.

• Tell her/him that this equation means taking 1/3 of 3/9.

• Ask the student to write the equation in his/her journal as follows: 3/9 x 1/3 = .
• Encourage the student to make the fraction 3/9 in the work area, using fraction pieces.

• Invite the student to divide 3/9 into thirds.

• The student will divide the fraction into three parts. Each part will contain 1/3 of 3/9, which equals 1/9.

• State that 3/9 x 1/3 = 1/9.

• Ask the student to record the answer in her/his journal.

• Repeat with other easy equations such as 4/7 x 1/2, 2/3 x1/2, and 3/6 x1/3.

SOLVING A MORE ADVANCED EQUATION, WHERE AN EQUIVALENT FRACTION MUST BE MADE

• The same day or a different day, still working with the Fraction Circles, invite the student to choose an equation slip with a fraction that needs to be written as an equivalent fraction before it can be split up, such as 1/3 x 2/3.

• Remind the student that 1/3 x 2/3 means 2/3 of 1/3.

• Encourage the student to make the fraction 1/3 in the work area, using Fraction Circles.

• Ask the student if he/she can take 2/3 of the 1/3 fraction piece. (No.)

• Encourage the student to make a fraction that is equivalent to 1/3 and that can be divided into three. Using trial and error, the student may first try 2/6 before realizing that 3/9 will work.

• Invite the student to write this equivalent equation in her/his journal: 3/9 x 2/3 = .

• Invite the student to take 2/3 of 3/9 and place the pieces in the work area.

• Encourage the student to count the ninths fraction pieces. There are two.

• Say, “3/9 x 2/3 = 2/9.”

• Ask the student to complete this equation in his/her journal.

• Ask the student to place the fraction pieces back in the Fraction Circle frames at the top of the work area.
• Repeat with other equations where an equivalent fraction must be made, such as 1/4 x 1/2 or 1/3 x 1/3.

YEARS 5 AND 6
• Repeat the above activities with new numbers, only this time use the Fraction Circle Box instead of or in addition to the Fraction Circles. Use more challenging fractions such as 1/2 x 2/5 or 2/3 x 4/2.

Extensions

• Copy a prepared equation into the journal and try to find the answer without using the Fraction Circles or Fraction Circle Box. If necessary, make little sketches to represent the fractions. Repeat for other prepared equations.

• A single adult wants to make one-half a recipe of berry sauce for ice cream using Imperial cup measures. The original recipe calls for 3 cups fruit, 2 tsp cornstarch, 1/2 cup sugar, and 1/4 cup water. Write the four equations that must be solved to halve the recipe, and find the answers. Record the one-half recipe in the journal.

• Use Fraction Circles to solve the following word problem, and write the equation in the journal: The class was discussing where to go on the next field trip. One-half wanted to go to the aquarium. Of the one-half who wanted to go to the aquarium, two-thirds wanted to watch the sharks being fed. What fraction of the whole class was interested in watching sharks being fed?